Bayesian Spectral Moment Estimation and Uncertainty Quantification
نویسندگان
چکیده
منابع مشابه
Uncertainty Quantification in Bayesian In- version
Probabilistic thinking is of growing importance in many areas of mathematics. This paper highlights the beautiful mathematical framework, coupled with practical algorithms, which results from thinking probabilistically about inverse problems arising in partial differential equations. Many inverse problems in the physical sciences require the determination of an unknown field from a finite set o...
متن کاملBayesian Solution Uncertainty Quantification for Differential Equations
We explore probability modelling of discretization uncertainty for system states defined implicitly by ordinary or partial differential equations. Accounting for this uncertainty can avoid posterior under-coverage when likelihoods are constructed from a coarsely discretized approximation to system equations. A formalism is proposed for inferring a fixed but a priori unknown model trajectory thr...
متن کاملForward and Backward Uncertainty Quantification in Optimization
This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.
متن کاملEfficient Bayesian estimation and uncertainty quantification in ordinary differential equation models
Abstract: In engineering, physics, biomedical sciences and many other fields the regression function is known to satisfy a system of ordinary differential equations (ODEs). Our interest lies in the unknown parameters involved in the ODEs. When the analytical solution of the ODEs is not available, one approach is to use numerical methods to solve the system. A four stage Runge-Kutta (RK4) method...
متن کاملBayesian Framework for Multidisciplinary Uncertainty Quantification and Optimization
This paper presents a comprehensive methodology that combines uncertainty quantification, propagation and robustness-based design optimization using a Bayesian framework. Two types of epistemic uncertainty regarding model inputs/parameters are emphasized: (1) uncertainty modeled as p-box, and (2) uncertainty modeled as interval data. A Bayesian approach is used to calibrate the uncertainty mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Plasma Science
سال: 2020
ISSN: 0093-3813,1939-9375
DOI: 10.1109/tps.2019.2946952